Math 261
Spring 2023
Lecture 42

Feb 19-8:47 AM
class QZ 12.

$$
\begin{aligned}
& f^{\prime}(x)=5 x \sqrt{x} \quad f(4)=0, \\
& f^{\prime}(x)=5 x^{1} \cdot x^{1 / 2}=5 x^{\frac{3}{2}} \\
& f(x)=5 \cdot \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+c=\frac{5 x^{\frac{5}{2}}}{\frac{5}{2}}+c=2 x^{5 / 2}+c \\
& f(4)=0 \quad 2(4)^{5 / 2}+c=0 \quad 2(2)^{5}+C=0 \\
& f(x)=2 x^{5 / 2}-64 \quad f(x)=2 x^{2} \sqrt{x}-64 \\
& C=-64
\end{aligned}
$$

May 1-8:50 AM

find the area below $f(x)$, above x-axis from $x=a$ to $x=b$.

Divide interval $[a, b]$ into ${ }_{x} x_{n}$ Subintervals.

$$
\begin{aligned}
& x_{1}=a+1 \Delta x \\
& x_{2}=x_{1}+1 \Delta x=a+2 \Delta x \\
& x_{3}=x_{2}+1 \Delta x=a+3 \Delta x \\
& \vdots \\
& x_{i}=x_{i-1}+y \Delta x=a+i \Delta x
\end{aligned}
$$

May 1-9:08 AM

As n gets bigger, we get better result.

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \cdot \Delta x & \text { if this limit } \\
\text { exist, we have } \\
\text { the total area }
\end{array}
$$

May 1-9:21 AM

$$
\begin{aligned}
& \text { find the area below } f(x)=2 x+3 \text {, above }
\end{aligned}
$$

$$
\begin{aligned}
& A_{i}=f\left(x_{i}\right) \cdot \Delta x=\left[2 x_{i}+3\right] \cdot \frac{4}{n} \\
& =\left[2 \cdot \frac{4 i}{n}+3\right] \cdot \frac{4}{n}=\left(\frac{8 i}{n}+3\right) \cdot \frac{4}{n} \\
& \sum_{i=1}^{n} A_{i}=\sum_{i=1}^{n}\left(\frac{8 i}{n}+3\right) \cdot \frac{4}{n} \\
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{8 i}{n}+3\right) \cdot \frac{4}{n}=\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left(\frac{8 i}{n}+3\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \cdot\left[\sum_{i=1}^{n} \frac{8 i}{n}+\sum_{i=1}^{n} 3\right] \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \cdot\left[\frac{8}{n} \sum_{i=1}^{n} i+3 \sum_{i=1}^{n} 1\right]
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{4}{n} \cdot\left[\frac{8}{n} \sum_{i=1}^{n} i+3 \sum_{i=1}^{n} 1\right]
$$

$$
=\lim _{n \rightarrow \infty} \frac{4}{n}\left[\frac{8}{n} \cdot \frac{n(n+1)}{2}+3 \cdot n\right]
$$

$$
\lim _{n \rightarrow \infty} n<\theta^{\frac{32}{2}}
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{32 n^{2}+j 0 n k{ }^{+\frac{1}{2}}}{2 n^{2}}+12\right)=\frac{32}{2}+12
$$

	$=28$
Trapezoid	
$h=4, b=3, B=11$	
$A=\frac{(b+B) \cdot h}{2}$	$=\frac{(3+11) \cdot 4}{2}$
	$=28$

May 1-9:44 AM

$$
\begin{aligned}
& \text { find the area below } f(x)=x^{3} \text {, above } \\
& x \text {-axis, from } x=1 \text { to } x=2 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow x_{i}=a+i \Delta x \\
& \rightarrow \frac{1 x_{i}{ }^{2} \rightarrow}{1+x_{i}}=1+i \cdot \frac{1}{\eta}=1+\frac{i}{n} \\
& A_{i}=f\left(x_{i}\right) \cdot \Delta x=\left(1+\frac{i}{n}\right)^{3} \cdot \frac{1}{n} \\
& \text { Recall } \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& \left(1+\frac{i}{n}\right)^{3}= \\
& A_{i}=\left(1+\frac{i}{n}\right)^{3} \cdot \frac{1}{n}
\end{aligned}
$$

